Статья 'Компьютерная технология прогностического оценивания функциональной надёжности пилота' - журнал 'Программные системы и вычислительные методы' - NotaBene.ru
по
Меню журнала
> Архив номеров > Рубрики > О журнале > Авторы > Требования к статьям > Политика издания > Редакция > Порядок рецензирования статей > Редакционный совет > Ретракция статей > Этические принципы > О журнале > Политика открытого доступа > Оплата за публикации в открытом доступе > Online First Pre-Publication > Политика авторских прав и лицензий > Политика цифрового хранения публикации > Политика идентификации статей > Политика проверки на плагиат
Журналы индексируются
Реквизиты журнала
ГЛАВНАЯ > Вернуться к содержанию
Программные системы и вычислительные методы
Правильная ссылка на статью:

Компьютерная технология прогностического оценивания функциональной надёжности пилота

Гузий Анатолий Григорьевич

доктор технических наук

заместитель директора по управлению безопасностью полетов ПАО «Авиакомпания «ЮТэйр»

620025, Россия, г. Тюмень, Интернациональная, 181, оф. 24

Guzii Anatolii Grigor'evich

Doctor of Technical Science

Deputy Director for Flight Safety Management, UTair Aviation

127083, Russia, Moscow, Petrovsko-Razumovskaya alley, 12 A

gniiivm-g@ya.ru
Другие публикации этого автора
 

 
Кукушкин Юрий Александрович

доктор технических наук

ведущий научный сотрудник Центрального научно-исследовательского института ВВС Минобороны России

127183, Россия, г. Москва, Петровско-Разумовская аллея, 12, оф. А

Kukushkin Yurii Aleksandrovich

Doctor of Technical Science

Leading Scientific Associate Central Scientific Research Institute of Air Force of the Ministry of Defense of Russia

127183, Russia, Moskovskaya oblast', g. Moscow, Petrovsko-Razumovskaya alleya, 12, of. A

prof.Kukushkin@yandex.ru
Другие публикации этого автора
 

 
Лушкин Александр Михайлович

кандидат технических наук

заместитель генерального директора по управлению безопасностью полетов ПАО «Авиакомпания «ЮТэйр»

620025, Россия, г. Тюмень, ул. Интернациональная, 181, оф. 33

Lushkin Aleksandr Mikhailovich

PhD in Technical Science

 
Deputy Director General for Safety Management of UTair Aviation

125367, Russia, Moscow, Volokolamskoe Shosse, 41, apt. 71

gniiivm-m@yandex.ru
Другие публикации этого автора
 

 

DOI:

10.7256/2454-0714.2018.2.22425

Дата направления статьи в редакцию:

24-03-2017


Дата публикации:

13-06-2018


Аннотация: Предметом исследования является математическое обеспечение прогностического оценивания функциональной надёжности пилота. Объектом исследования является функциональная надежность профессиональной деятельности пилота. Авторы подробно рассматривают такие аспекты темы как автоматизированное оценивание риска авиационного события, обусловленного выходом пилотажных параметров за эксплуатационные ограничения, понимая под оценкой риска вероятностную меру наступления авиационного события фиксированной степени тяжести вследствие превышения эксплуатационных ограничений воздушного судна, причем в полете такое событие (в зависимости от тяжести последствий) классифицируется как авиационное событие, подлежащее расследованию. Методология исследования базируется на системном подходе и объединяет методы теории вероятностей, математической статистики, авиационной кибернетики, психофизиологии летного труда. Основным результатом проведенного исследования является программно реализованная технология прогностического оценивания функциональной надёжности пилота, реализованная, позволяющая реализовать индивидуальное априорное оценивание риска авиационного события (инцидента) по группе причинных факторов «экипаж» на наиболее ответственных этапах полета (на взлете и посадке) до того, как будет накоплена статистика авиационных событий, обусловленных выходом пилотажных параметров за эксплуатационные ограничения, что имеет важное значение для обеспечения превентивного управления уровнем безопасности полетов в авиакомпании. Новизна исследования заключается в том, что технология прогностического оценивания функциональной надёжности пилота разработана на основе концепции приемлемого риска авиационного происшествия.


Ключевые слова:

надежность деятельности пилота, прогнозирование надежности пилота, мониторинг надежности пилота, мониторинг состояния пилота, авиационная кибернетика, безопасность полетов, авиационный риск-менеджмент, прогностические оценки, психофизиология летного труда, вероятностное моделирование

Abstract: The subject of research is mathematical software prognostic evaluation of functional reliability of the pilot. The object of research is the functional reliability of the professional activities of the pilot. The authors consider in detail such aspects of the topic as automated assessment of the risk of an aviation event due to the release of flight parameters for operational limitations, understanding by the risk assessment the probabilistic measure of the occurrence of an aviation event of a fixed degree of severity due to exceeding operational limitations of the aircraft, in flight such an event (depending on the severity effects) is classified as an aviation event, subject to the investigation. The research methodology is based on the system approach and unites methods of probability theory, mathematical statistics, aviation cybernetics, psychophysiology of flight work. The main result of the study is a software-implemented technology for predicting the functional reliability of the pilot, implemented, allowing to implement an individual a priori risk assessment of an aviation event (incident) for a group of causative factors "crew" in the most critical stages of flight (takeoff and landing) Accumulated statistics of aviation events caused by the release of flight parameters for operational limitations, which is important To ensure proactive management of safety levels in the airline. The novelty of the research is that the technology of predictive estimation of the functional reliability of the pilot is developed on the basis of the concept of acceptable risk of an accident.


Keywords:

reliability of the pilot, pilot reliability prediction, pilot reliability monitoring, pilot condition monitoring, aeronautical cybernetics, flight safety, aviation risk management, predictive assessments, psychophysiology of flight work, probabilistic modeling

Введение

Признание на международном уровне концепции приемлемого риска авиационного происшествия в полете способствует достижению максимальной коммерческой эффективности летной эксплуатации воздушного транспорта, но обостряет проблему обеспечения требуемого уровня безопасности полетов (БП) [1-3]. В разряд нерешаемых переходит задача подготовки пилотов соответствующего профессионального уровня, выполняющих полеты с соответствующей функциональной надежностью, при одновременном снижении времени и затрат, связанных с обучением, вводом в строй, профессиональным ростом, в том числе при допуске к полетам на новых типах воздушных судов (ВС), при назначении командирами ВС, инструкторами и др. [3]. Отмеченная проблема усугубляется накоплением усталости экипажей в периоды интенсивной летной работы, когда налет у основной части пилотов приближается к ограничению по санитарным правилам и нормам [1-5].

В той или иной степени успешное решение коммерческих задач периодически вступает в противоречие с обеспечением требуемого уровня БП, поскольку увеличивается риск авиационного события, причиной которого является недостаточно высокое качество пилотирования вследствие сниженной функциональной надежности профессиональной деятельности летчика [1-7]. Снижение качества пилотирования обусловливает увеличение частоты случаев выхода пилотажных параметров за эксплуатационные ограничения ВС. В свою очередь, выход показателей за эксплуатационные ограничения в полете классифицируется как авиационное событие, подлежащее расследованию: инцидент, серьезный инцидент или авиационное происшествие (в зависимости от тяжести последствий) [8]. Эксплуатационные ограничения оговариваются Руководством по летной эксплуатации (РЛЭ) конкретного типа ВС и охватывают ряд пилотажных параметров, подлежащих записи и хранению бортовыми средствами регистрации полетных данных (БСРПД): скорость, перегрузка, режимы работы силовых установок, углы крена, тангажа, атаки и др. [9-12].

Постановка задачи прогностической рискометрии функциональной надежности пилота

Обычно при принятии решения, связанного с определением профессионального уровня пилота, преобладает субъективная оценка степени готовности пилота к выполнению самостоятельных полетов (или к инструкторской работе). Но функциональные возможности современных БСРПД, средств наземной обработки полетной информации (ПИ), их математическое обеспечение, в том числе экпресс–анализ, способствуют не только оперативности, но и объективности индивидуального оценивания качества пилотирования в каждом отдельно взятом полете. Очевидно, что достигнутый профессиональный уровень летчика должен определяться по некоторой совокупности выполненных полетов, отличающихся, как правило, степенью сложности, а, следовательно, и степенью потенциальной успешности [13-18]. Должна вестись и максимально использоваться управляемая база данных (БД) ПИ.

При творческом подходе к использованию такой ПИ появляется возможность анализа накапливаемой информации в интересах объективной количественной оценки риска авиационного события, обусловленного выходом пилотажных параметров за эксплуатационные ограничения. Под оценкой риска понимается вероятностная мера наступления авиационного события фиксированной степени тяжести (например, авиационного инцидента), вследствие превышения эксплуатационных ограничений ВС.

Пилотажные параметры, на которые распространяются эксплуатационные ограничения, в обязательном порядке регистрируются в БСРПД. В настоящее время ПИ практически всех полетов подлежит обработке и анализу. Таким образом, теоретически представляется возможным применительно к каждому командиру экипажа или пилотировавшему летчику, по совокупности выделенных из ПИ экстремальных значений контролируемых пилотажных параметров, оценить вероятность выхода за эксплуатационные ограничения в полете, то есть вероятность авиационного события типа «инцидент», даже еслитаких фактов за оцениваемый период летной работы не наблюдалось [14-17].

Достижение ограничиваемым параметром Х некоторого (заведомо установленного для конкретного типа ВС) значения Хогр можно рассматривать как реализацию случайного процесса, описываемого функцией Х(t), а совокупность экстремальных значений ограничиваемого показателя {XEXTR}, имевших место в каждом полете анализируемого периода летной работы, можно рассматривать как случайные величины. По совокупности значений {ХEXTR} можно оценивать вероятность выхода параметров полета за эксплуатационные ограничения.

Оценка вероятности выхода случайной функции экстремальных значений контролируемого параметра за предел некоторого значения Хогр, расположенного в непосредственной близости среднестатистического значения ХEXTRср. наблюдаемой совокупности {XEXTR}, не представляет сложности при любом законе распределения -[19-24]. Но значение эксплуатационного ограничения параметра и центр распределения его наблюдаемых экстремальных значений обычно оказываются удаленными друг от друга более, чем на 3σ(х) (σ(х) – оценка среднего квадратичного (стандартного) отклонения). На практике определить функцию распределения случайной величины за пределами m(х)±3σ(х) (m(х) – оценка математического ожидания случайной величины х) не удается по причине отсутствия необходимого объема исходных статистических данных. Таким образом, актуальной является задача оценивания вероятности события, как правило, не наблюдавшегося за исследуемый период.

Особенности плотности распределения экстремальных значений контролируемого пилотажного параметра

Решение сформулированной задачи усложняется еще и тем, что, вид функции распределения случайной величины за пределами m(х)±3σ(х) практически не зависит от вида этой функции в окрестности математического ожидания (в центре распределения). Этим подтверждается потребность и должна обеспечиваться возможность выбора универсального вида функции распределения с определением параметров распределения непосредственно по имеющимся результатам наблюдений.

На рис. 1 приведен пример распределения экстремальных значений характерного пилотажного параметра у трех пилотов, отличающихся удалением оценки математического ожидания наблюдений параметра от установленного ограничения () и оценкой стандартного отклонения наблюдений ().

Рисунок 1. – Типовые плотности распределения экстремальных значений контролируемого пилотажного параметра.

Из примера видно, что математическое ожидание экстремальных значений характерного параметра Х у третьего пилота значительно ближе к Хогр, чем у первого и второго, однако наивысшая вероятность выхода за Хогр – у второго пилота, из–за большой дисперсии, то есть нестабильности, которую можно объяснить, к примеру, зависимостью f(X) как от качества пилотирования, так и от условий полета: в нормальных условиях – высокое качество, но при любом усложнении условий полета качество пилотирования резко снижается вплоть до возможного выхода за эксплуатационные ограничения.

Технология расчёта вероятности выхода контролируемого пилотажного параметра за установленные ограничения

Пусть по результатам оцениваемых полетов некоторого летчика А имеем совокупность из n экстремальных значений характерного параметра Х в n полетах. Представим их в виде вариационного ряда возрастающих значений:

.

Оценим статистическую вероятность (накопленную частоту непревышения всеми членами ряда значения по формуле :

.

Точки принадлежат функции распределения (рис.2).

Рисунок 2. – Функция распределения экстремальных значений характерного пилотажного параметра.

Продление функции распределения за точку до пересечения с вертикалью Xогр позволило бы получить искомую оценку вероятности непревышения установленного эксплуатационного ограничения, т.е. получить значение функции . Но независимо от способа восстановления или экстраполяции функции однозначную функцию распределения на интервале [Xn, Xогр.] получить невозможно в силу высокой степени неопределенности, что и отражено на рис. 2 размножением возможных вариантов в некоторой точке бифуркации .

В тех случаях, когда экстремальные значения характерного параметра Х в разных реализациях (наблюдениях) не зависят друг от друга (как правило, это разные полеты или разные этапы полета), а случайная величина Х не ограничена ни справа, ни слева, закон ее распределения описывается функцией [21-24]:

,

где – вероятность непревышения независимой переменной значения;

– линейная функция переменной с неизвестными параметрами (нормированное отклонение).

Из записанной формулы следует связь нормированного отклонения с аргументом через статистическую вероятность :

.

В координатах , т.е. точки располагаются не на прервавшейся экспоненте, а на прямой линии (рис. 3), экстраполяция которой до значения позволяет рассчитать значение , а по нему – оценку вероятности невыхода за эксплуатационные ограничения, используя формальное представление закона распределения случайной величины Х:

.

Рисунок 3. – График функции , где .

Соответственно, вероятность выхода параметра X за эксплуатационные ограничения определяется как:

.

Достоверность оценки вероятности выхода пилотажных параметров за эксплуатационные ограничения зависит от дисперсии параметра (переменной) и количества наблюдений (оцениваемых полетов) [24]. Практика показала, что для получения приемлемой достоверности (при доверительной вероятности 0,8) обычно требуется информация не менее пяти выполненных полетов.

Если общее количество параметров полета, имеющих эксплуатационные ограничения на конкретном типе ЛА и регистрируемых в полете, равно m, то вероятность выхода за эксплуатационные ограничения (по любому параметру) в предстоящем полете составляет

.

Множество наиболее важных пилотажных параметров, имеющих эксплуатационные ограничения

При практической реализации стратегии превентивного управления уровнем БП в авиакомпании «Трансаэро» [25, 26] методом экспертных оценок к характерным показателям, имеющим эксплуатационные ограничения и в наибольшей степени влияющим на БП в гражданской авиации, отнесены:

− вертикальная перегрузка () на посадке;

− угол крена (γ);

− угол тангажа на взлете (υвзл);

− угол тангажа на посадке (υпос).

Целесообразность использования вероятностного подхода к оцениванию редких событий, обусловленных выходом параметров полета за пределы эксплуатационных ограничений, подтверждается статистикой: за каждый рейс пилоты совершают в среднем 1,84 ошибки, в то время как максимальное количество ошибок на этапе полета – 14 [27]. Это свидетельствует о значительной разнице между среднестатистическим значением количественного показателя и его экстремальным значением.

Пример реализации предложенной технологии

В качестве примера, демонстрирующего возможности вышеизложенного подхода, на рис. 4 приведена динамика вероятности грубой посадки (превышение эксплуатационного ограничения ) у командира ВС Boeing 737, совершившего грубую посадку (ny = 2,18) в июле.

Рисунок 4. – Динамика оценки вероятности грубой посадки для командира Boeing 737.

Из рис. 4 видно, что увеличение вероятности грубой посадки могло быть спрогнозировано в мае, за 2 месяца до инцидента, по тенденции ежемесячного линейного роста функции . Т.е. вероятность грубой посадки у этого командира ВС увеличивалась на два порядка (в 100 раз!) ежемесячно. Однако корректирующие меры не были предприняты. В результате в одном из полетов в июле вертикальная перегрузка на посадке составила ny=2,18, т.е. было превышено установленное в РЛЭ Boeing 737 ограничение nyогр=2. Оценка вероятности грубой посадки в июле составила 0,3.

Особенности автоматизированной системы управления рисками при производстве полетов

В связи с трудоемкостью расчетов, требующих от аналитика соответствующего уровня математических знаний, описанная процедура расчета оценки вероятности не имевших место авиационных событий, обусловленных выходом параметров полета за эксплуатационные ограничения, формализована и положена в основу математического обеспечения Автоматизированной системы управления рисками при производстве полетов (АС УРПП), разработанной в авиакомпании «Трансаэро» [28, 29]. АС УРПП позволяла с любой периодичностью, на практике - ежемесячно, количественно оценивать функциональную надежность каждого пилота с учетом типа ВС, особенностей аэродрома вылета и посадки, в заданном временном интервале (количестве вылетов) и по другим исходным данным. Вычисления могут производиться по всей совокупности или по любому из контролируемых пилотажных параметров. Благодаря внедрению АС УРПП, в авиакомпании внедрен ежемесячный мониторинг уровня функциональной надежности всех пилотирующих летчиков.

При освоении новых регулярных линий и новых аэродромов АС УРПП позволяет, начиная с пяти выполненных полетов, оценить вероятность выхода за эксплуатационные ограничения при взлете и посадке на любом из аэродромов. Поскольку динамичное развитие авиакомпании с освоением новых типов ВС и новых линий – очевидный фактор риска авиационного события, в авиакомпании «Трансаэро» с использованием АС УРПП выполнялось рейтинговое ранжирование аэродромов (аэропортов) по риску выхода за эксплуатационные ограничения по перегрузке на посадке и по углу тангажа на взлете и посадке.

«Трансаэро» - российская коммерческая авиакомпания, первая в России внедрила систему управления безопасностью полетов, 25 лет истории без аварий и катастроф, ушла с рынка пассажирских авиационных перевозок, занимая 17-е место в рейтинге безопасных авиакомпаний мира (по заключению немецкого исследовательского центра JACDEC, который занимается изучением безопасности полетов на воздушном транспорте) [30].

Заключение

Таким образом, разработанная технология прогностического оценивания функциональной надёжности пилота, реализованная в АС УРПП, позволяет реализовать индивидуальное априорное оценивание риска авиационного события (инцидента) по группе причинных факторов «экипаж» на наиболее ответственных этапах полета (на взлете и посадке) до того, как будет накоплена статистика авиационных событий, обусловленных выходом пилотажных параметров за эксплуатационные ограничения, что имеет важное значение для обеспечения превентивного управления уровнем безопасности полетов в авиакомпании.

Библиография
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Ссылка на эту статью

Просто выделите и скопируйте ссылку на эту статью в буфер обмена. Вы можете также попробовать найти похожие статьи


Другие сайты издательства:
Официальный сайт издательства NotaBene / Aurora Group s.r.o.