по
Кибернетика и программирование
12+
Меню журнала
> Архив номеров > Рубрики > О журнале > Авторы > О журнале > Требования к статьям > Редакция и редакционный совет > Порядок рецензирования статей > Рецензирование за 24 часа – как это возможно? > Политика издания > Ретракция статей > Этические принципы > Политика открытого доступа > Оплата за публикации в открытом доступе > Публикация за 72 часа: что это? > Политика авторских прав и лицензий > Политика цифрового хранения публикации > Политика идентификации статей > Политика проверки на плагиат
Журналы индексируются
Реквизиты журнала

ГЛАВНАЯ > Вернуться к содержанию
Статьи автора Кревецкий Александр Владимирович
Кибернетика и программирование, 2017-6
Кревецкий А.В., Уржумов Д.В. - Опознавание изображений цепочечных структур из групп точечных объектов по корреляции элементов кодов их контуров c. 19-27

DOI:
10.25136/2306-4196.2017.6.25091

Аннотация: Распознавание формы изображений групп точечных и/или малоразмерных объектов (ГТО) представляют собой нетривиальную задачу из-за несвязности и вырожденности их элементов. Дополнительно задача усложняется для ГТО с нестационарной конфигурацией, таких как «цепочки» и «скопления». Различение данных типов изображений имеет самостоятельное значение, а также может использоваться для разветвления алгоритма более детального распознавания ГТО. Для синтеза эффективных различителей цепочек и скоплений важно определиться с принципом описания формы ГТО и дискриминационным признакам, определить статистику и характеристики принятия решений в условиях действия мешающих факторов. Решение данной задачи достигается методами теории обработки цифровых изображений и сигналов, теории контурного анализа для синтеза алгоритмов описания и анализа формы изображений, методами теории вероятности и математической статистики для синтеза методов принятия решений. Для связывания изолированных элементов ГТО в единый объект используется процедура построения минимального остовного дерева. Его форма описывается цепным комплекснозначным кодом – его контуром. Зависимость ширины энергетического спектра такого контура или величины интервала корреляции его отсчетов от степени сложности формы дало основание выбрать в качестве дискриминационного признака различения цепочек и скоплений характеристики автокорреляционной функции (АКФ) контура. В качестве таких характеристик исследуются ширина АКФ (интервал корреляции) и корреляция соседних элементов контуров ГТО. Синтезированы соответствующие алгоритмы различения ГТО указанных классов как опознавателей цепочек. Найдены характеристики алгоритмов принятия решений для различных условий наблюдения. Выполнен сравнительный анализ их эффективности и ограничений применимости.
Программные системы и вычислительные методы, 2016-4
Кревецкий А.В. - Особенности формирования ассоциированного сплошного образа в задачах распознавания групповых точечных объектов

DOI:
10.7256/2454-0714.2016.4.21165

Аннотация: Групповые точечные объекты (ГТО) представляют собой класс изображений, отличающийся несвязностью и вырожденностью своих элементов. Для обнаружения, пространственного разрешения (сегментации, локализации), распознавания и оценки параметров таких объектов в наблюдаемых сценах выполняется связывание элементов ГТО ассоциированным сплошным образом (АСО). Базовой процедурой формирования ассоциированного образа служит расфокусировка точечной сцены. Для достижения высокой эффективности решения указанных задач по данным зашумленных изображений необходимо обеспечить согласование параметров моделей АСО со свойствами ГТО и параметрами алгоритмов принятия решений. Решение данной задачи достигается методами функционального анализа для поиска экстремумов, теории обработки непрерывных и цифровых изображений для синтеза алгоритмов, дискретной и вычислительной математики для конкретизации численного метода формирования АСО. Для колоколообразной и прямоугольной импульсных характеристик дефокусирующего фильтра получены правила выбора уровня ограничивающего АСО контура с максимальной устойчивостью к ошибкам квантования яркости изображения. Конкретизирована методика согласования параметров модели АСО с плотностью элементов ГТО. Для наглядности и упрощения интерфейса оператора работа с моделями АСО выделен параметр – «радиус» импульсной характеристики фильтра. Получены аналитические связи «радиуса» с порогом локализации пространственно-компактных ГТО. Синтезирован численный метод базовой процедуры формирования АСО, отличающийся на один – два порядка большей производительностью по сравнению с подходом на основе быстрого преобразования Фурье для пространственно-компактных ГТО. Метод базируется на фильтрующих свойствах дельтовидного распределения яркости элементов ГТО и ограничения размеров окна низкочастотного фильтра с учетом числа уровней квантования его импульсной характеристики. Регулярность данной операции для ненулевых отметок наблюдаемой точечной сцены теоретически удобна для распараллеливания вычислений.
Программные системы и вычислительные методы, 2014-3
Уржумов Д.В., Кревецкий А.В. - Исследование достаточной статистики различения групповых точечных объектов с цепочечной и облачной структурами по форме их графов иерархической группировки

DOI:
10.7256/2454-0714.2014.3.13646

Аннотация: Выполнена параметризация моделей локационных изображений групп точечных объектов типов «цепочка» и «скопление». Исследованы вероятностные характеристики достаточной статистики их различения, необходимые для выбора решающих правил, оптимальных по заданным критериям в различных условиях наблюдения.Рассмотрена методика моделирования наблюдаемых искажений эталонных цепочек, которая все многообразие условий наблюдения позволяют свести к двум параметрам – кривизне траектории цепочки и уровню отклонений наблюдаемых координат точечных объектов от их эталонных положений. Такая методика позволяет формализовать и снизить трудоемкость сопоставления конкурирующих методов опознавания цепочек. Рассмотрены особенности программного комплекса для тестирования конкурирующих алгоритмов различения групповых объектов. В качестве статистики различения предложено отношение диаметра графа иерархической группировки обнаруженных объектов к суммарной длине ребер этого графа. На основе данных математических моделей методом статистических испытаний получены выборочные оценки законов распределения вероятностей достаточной статистики различения для различных значений параметров моделей. Свойства рассмотренного метода различения цепочек и скоплений с учетом меньшей его трудоемкости делают целесообразным его использование при построении систем распознавания групповых точечных объектов в условиях высокой априорной неопределенности относительно параметров условий наблюдения при мощности групп не менее 10. Предложенная архитектура программного комплекса позволяет тестировать алгоритмы распознавания с различной по числу и типу параметров сигнатурой.
Другие сайты издательства:
Официальный сайт издательства NotaBene / Aurora Group s.r.o.
Сайт исторического журнала "History Illustrated"