по
Программные системы и вычислительные методы
12+
Меню журнала
> Архив номеров > Рубрики > О журнале > Авторы > Требования к статьям > Политика издания > Редакция > Порядок рецензирования статей > Редакционный совет > Ретракция статей > Этические принципы > О журнале > Политика открытого доступа > Оплата за публикации в открытом доступе > Online First Pre-Publication > Политика авторских прав и лицензий > Политика цифрового хранения публикации > Политика идентификации статей > Политика проверки на плагиат
Журналы индексируются
Реквизиты журнала
ГЛАВНАЯ > Вернуться к содержанию
Статьи автора Тутуева Александра Вадимовна
Программные системы и вычислительные методы, 2018-4
Бутусов Д.Н., Каримов А.И., Тутуева А.В., Красильников А.В., Горяинов С.В., Вознесенский А.С. - Гибридное моделирование системы Рёсслера посредством синхронизации аналоговой и дискретной моделей c. 1-14

DOI:
10.7256/2454-0714.2018.4.27828

Аннотация: В статье исследуется технология гибридного моделирования хаотических систем в форме синхронизации цифровой и аналоговой моделей системы Рёсслера, взаимодействующих через тракты аналого-цифрового и цифро-аналогового преобразования. Рассмотрены однонаправленный и двунаправленный варианты хаотической синхронизации, проведена оценка погрешности синхронизации для каждого из указанных случаев. Для аналоговой реализации системы Рёсслера разработана схема на основе операционных усилителей, умножителей и прецизионных пассивных элементов. Цифровая модель системы основана на полунеявном аппаратно-ориентированном методе численного интегрирования второго порядка алгебраической точности. С целью обоснования выбора метода приведены графики производительности различных решателей обыкновенных дифференциальных уравнений при моделировании системы Рёсслера. Показано, что выбранный полунеявный метод численного интегрирования обладает наибольшей вычислительной эффективностью среди всех методов второго порядка. Экспериментально продемонстрирована возможность синхронизации аналоговой и цифровой моделей хаотической системы. Рассмотрена синхронизация двух и трех моделей системы Рёсслера в различных вариантах топологии соединения. Путем анализа ошибки синхронизации показано, что наибольшая точность достигается при использовании полностью связанной топологии, которая основана на двунаправленном способе синхронизации трёх моделей системы Рёсслера.
Другие сайты издательства:
Официальный сайт издательства NotaBene / Aurora Group s.r.o.